Weakly interacting particle systems on inhomogeneous random graphs
نویسندگان
چکیده
منابع مشابه
On exclusion type inhomogeneous interacting particle systems
For a large class of inhomogeneous interacting particle systems (IPS) on a lattice we develop a rigorous method for mapping them onto homogeneous IPS. Our novel approach provides a direct way of obtaining the statistical properties of such inhomogeneous systems by studying the far simpler homogeneous systems. In the cases when the latter can be solved exactly our method yields an exact solution...
متن کاملFrom Interacting Particle Systems to Random Matrices
In this contribution we consider stochastic growth models in the Kardar-Parisi-Zhang universality class in 1+1 dimension. We discuss the large time distribution and processes and their dependence on the class on initial condition. This means that the scaling exponents do not uniquely determine the large time surface statistics, but one has to further divide into subclasses. Some of the fluctuat...
متن کاملMultiple Random Walks and Interacting Particle Systems
We study properties of multiple random walks on a graph under variousassumptions of interaction between the particles.To give precise results, we make our analysis for random regular graphs.The cover time of a random walk on a random r-regular graph was studiedin [6], where it was shown with high probability (whp), that for r ≥ 3 thecover time is asymptotic to θrn lnn, where...
متن کاملInhomogeneous Random Graphs
The ‘classical’ random graphs, introduced by Erdős and Rényi half a century ago, are homogeneous in the sense that all their vertices play the same role and the degrees of the vertices tend to be concentrated around a typical value. Many graphs arising in the real world do not have this property, having, for example, power-law degree distributions. Thus there has been much recent interest in de...
متن کاملGeometric Inhomogeneous Random Graphs
For the theoretical study of real-world networks, we propose a model of scale-free randomgraphs with underlying geometry that we call geometric inhomogeneous random graphs (GIRGs).GIRGs generalize hyperbolic random graphs, which are a popular model to test algorithms forsocial and technological networks. Our generalization overcomes some limitations of hyperbolicrandom graphs, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastic Processes and their Applications
سال: 2019
ISSN: 0304-4149
DOI: 10.1016/j.spa.2018.06.014